
Getting Started withSignal Processing Blockset 6



How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with Signal Processing Blockset

© COPYRIGHT 2004–2007 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.



Revision History
June 2004 First printing New for Version 6.0 (Release 14)
October 2004 Second printing Revised for Version 6.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.1 (Release 14SP2)
September 2005 Online only Revised for Version 6.2 (Release 14SP3)
March 2006 Online only Revised for Version 6.3 (Release 2006a)
September 2006 Online only Revised for Version 6.4 (Release 2006b)
March 2007 Online only Revised for Version 6.5 (Release 2007a)
September 2007 Third Printing Revised for Version 6.6 (Release 2007b)





Contents

Introduction

1
What Is Signal Processing Blockset? . . . . . . . . . . . . . . . . . 1-2

System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Required Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Related Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Product Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Demos in the Help Browser . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Demos on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Demos on MATLAB Central . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

Working with the Documentation . . . . . . . . . . . . . . . . . . . 1-10
Viewing the Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Printing the Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
Using This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11

Signal Processing Blockset Overview

2
Sample Model and Block Libraries . . . . . . . . . . . . . . . . . . 2-2

Modeling System Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Signal Processing Blockset Blocks . . . . . . . . . . . . . . . . . . . . 2-5

Key Blockset Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Sample Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Sample-Based Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Frame-Based Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Tunable Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

v



Features of Signal Processing Blockset . . . . . . . . . . . . . . 2-16
Frame-Based Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Multirate Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
Fixed-Point Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
Real-Time Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Adaptive and Multirate Filtering . . . . . . . . . . . . . . . . . . . . . 2-18
Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Statistical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Matrix Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Data Type Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20

Configuring Simulink for Signal Processing Models . . 2-22
Using dspstartup.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Settings in dspstartup.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23

Signal Processing Models

3
Creating a Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Setting the Model Parameters . . . . . . . . . . . . . . . . . . . . . . 3-6

Running the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8

Modifying Your Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

Filters

4
Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Designing a Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Adding a Digital Filter to Your Model . . . . . . . . . . . . . . . . . 4-6

vi Contents



Adaptive Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Designing an Adaptive Filter . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Adding the Adaptive Filter to Your Model . . . . . . . . . . . . . . 4-13
Viewing the Coefficients of Your Adaptive Filter . . . . . . . . 4-17

Code Generation

5
Understanding Code Generation . . . . . . . . . . . . . . . . . . . . 5-2

Code Generation with Real-Time Workshop . . . . . . . . . . . . 5-2
Highly Optimized Generated C Code . . . . . . . . . . . . . . . . . . 5-3

Generating Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Setting Up the Build Directory . . . . . . . . . . . . . . . . . . . . . . 5-4
Setting Configuration Parameters . . . . . . . . . . . . . . . . . . . . 5-5
Generating Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Viewing the Generated Code . . . . . . . . . . . . . . . . . . . . . . . . 5-11

Frequency Domain Signals

6
Power Spectrum Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

Creating the Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Setting the Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 6-3
Viewing the Power Spectrum Estimates . . . . . . . . . . . . . . . 6-8

Spectrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11
Modifying the Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 6-11
Setting the Model Parameters . . . . . . . . . . . . . . . . . . . . . . . 6-13
Viewing the Spectrogram of the Speech Signal . . . . . . . . . . 6-17

Index

vii



viii Contents



1

Introduction

What Is Signal Processing Blockset?
(p. 1-2)

Learn more about Signal Processing
Blockset and its components

System Setup (p. 1-3) Install Signal Processing Blockset
and learn about the products
required to run the models in this
manual

Product Demos (p. 1-5) View the demos available in the
product and on the Web

Working with the Documentation
(p. 1-10)

Learn how to view and print the
documentation



1 Introduction

What Is Signal Processing Blockset?
Signal Processing Blockset is a tool for digital signal processing algorithm
simulation and code generation. It adds frame-based processing to the
Simulink® environment. Signal Processing Blockset is made up of block
libraries containing signal processing, linear algebra, and matrix math blocks.
All of the blocks support double- and single-precision floating-point data types.
Most blocks also support fixed-point and integer data types when you also
have Simulink Fixed Point. You can interconnect Signal Processing Blockset
blocks to create sophisticated models capable of simulating operations such as
speech and audio processing, wireless digital communications, radar/sonar,
and medical electronics.

Signal Processing Blockset requires Simulink, a tool for simulating dynamic
systems. Simulink is a model definition environment. Use Simulink blocks
to create a block diagram that represents the computations of your system
or application. Simulink is also a model simulation environment. Run the
block diagram to see how your system behaves. All of the blocks in Signal
Processing Blockset are designed for use with the blocks in the Simulink
libraries. If you are new to Simulink, read Getting Started with Simulink to
better understand its functionality.

You can use Signal Processing Blockset and Simulink to develop your signal
processing concepts and to efficiently revise and test these concepts until your
design is production-ready. You can also use Signal Processing Blockset in
conjunction with Real-Time Workshop® to automatically generate code for
real-time execution on DSP hardware.

1-2



System Setup

System Setup

In this section...

“Installation” on page 1-3

“Required Products” on page 1-3

“Related Products” on page 1-4

Installation
Before you begin working with Signal Processing Blockset, you need to install
the product on your computer.

Installing Signal Processing Blockset
Signal Processing Blockset follows the same installation procedure as the
MATLAB® toolboxes. See the MATLAB installation documentation for your
platform.

Installing Online Documentation
Installing the documentation is part of the installation process:

• Installation from a DVD — Start the MathWorks installer. When prompted,
select the Product check boxes for the products you want to install. The
documentation is installed along with the products.

• Installation from a Web download — If you update Signal Processing
Blockset using a Web download and you want to view the documentation
with the MathWorks Help browser, you must install the documentation
on your hard drive.

Download the files from the Web. Then, start the installer, and select
the Product check boxes for the products you want to install. The
documentation is installed along with the products.

Required Products
Signal Processing Blockset is part of a family of products from The MathWorks.
You need to install the following products to use Signal Processing Blockset:

1-3



1 Introduction

• MATLAB

• Simulink

• Signal Processing Toolbox

MATLAB
You can use MATLAB to open model files and view Signal Processing Blockset
demos. You can import signal values from the MATLAB workspace into signal
processing models and export signal values from signal processing models
to the MATLAB workspace.

Simulink
Simulink provides an environment that enables you to create a block diagram
to model your physical system. You can create these block diagrams by
connecting blocks and using graphical user interfaces (GUIs) to edit block
parameters.

Signal Processing Toolbox
Signal Processing Toolbox provides basic filter capabilities. You can design
and implement filters using the Filter Design and Analysis Tool (FDATool)
and use them in your signal processing models.

Related Products
The MathWorks provides several products that are relevant to the kinds of
tasks you can perform with Signal Processing Blockset.

For more information about any of these products, see either

• The online documentation for that product if it is installed on your system

• The MathWorks Web site, at
http://www.mathworks.com/products/sigprocblockset/related.jsp

1-4

http://www.mathworks.com/products/sigprocblockset/related.jsp


Product Demos

Product Demos

In this section...

“Demos in the Help Browser” on page 1-5

“Demos on the Web” on page 1-8

“Demos on MATLAB Central” on page 1-8

Demos in the Help Browser
You can find interactive Signal Processing Blockset demos in the MATLAB
Help browser. This example shows you how to locate and open a typical demo:

1 To open the Help browser to the Demos tab, type demos at the MATLAB
command line.

2 To see a list of Signal Processing demo categories, double-click Blocksets,
and then double-click Signal Processing. These categories include
Adaptive Processing, Audio Processing, Communications, Fixed Point,
Spectral Analysis, Wavelets, and Working with Signals.

1-5



1 Introduction

3 To view the description of the Equalization demo, which demonstrates
adaptive channel equalization, click Adaptive Processing in the left
pane, and then click Equalization.

1-6



Product Demos

4 Click Open this model to display the Simulink model for the Equalization
demo. Run the model by selecting Start from the Simulation menu in
the model window.

1-7



1 Introduction

Demos on the Web
The MathWorks Web site contains viewlet demos that show you
how to use Signal Processing Blockset. You can find these demos at
http://www.mathworks.com/products/sigprocblockset/demos.jsp.

You can run these demos without having MATLAB or Signal Processing
Blockset installed on your system.

Demos on MATLAB Central
MATLAB Central contains files, including demos, contributed by users and
developers of Signal Processing Blockset, MATLAB, Simulink, and other
products. Contributors submit their files to one of a list of categories. You can
browse these categories to find submissions that pertain to Signal Processing

1-8

http://www.mathworks.com/products/sigprocblockset/demos.jsp


Product Demos

Blockset or a specific problem that you would like to solve. MATLAB Central
is located at http://www.mathworks.com/matlabcentral/.

1-9

http://www.mathworks.com/matlabcentral/


1 Introduction

Working with the Documentation

In this section...

“Viewing the Documentation” on page 1-10

“Printing the Documentation” on page 1-11

“Using This Guide” on page 1-11

Viewing the Documentation
You can access the Signal Processing Blockset documentation using files you
installed on your system or from the Web using the MathWorks Web site.

Documentation in the Help Browser
This procedure shows you how to use the MATLAB Help browser to view the
Signal Processing Blockset documentation installed on your system:

1 In the MATLAB window, from the Help menu, click Product Help. The
Help browser opens.

2 From the list of products in the left pane, click Signal Processing
Blockset. In the right pane, the Help browser displays the Signal
Processing Blockset Roadmap page.

3 Under the section titled “Documentation Set,” click “Getting Started.” The
Help browser displays the chapters of this manual.

The Help browser also has a Demos tab where you can view product demos.
For more information, see “Product Demos” on page 1-5.

Documentation on the Web
You can also view the documentation from the MathWorks Web site. The
documentation available on these Web pages is for the latest release,
regardless of whether the release was distributed on a DVD or as a Web
download:

1 Navigate to the Signal Processing Blockset Product Page at
http://www.mathworks.com/products/sigprocblockset/.

1-10

http://www.mathworks.com/products/sigprocblockset/


Working with the Documentation

2 Click the Documentation link on the left side of the page. The Signal
Processing Blockset documentation is displayed.

Printing the Documentation
The documentation for Signal Processing Blockset is also available in
printable PDF format. To view the documentation in PDF format:

1 In the MATLAB window, from the Help menu, click Product Help. The
Help browser opens.

2 From the list of products in the left pane, click Signal Processing
Blockset. In the right pane, the Help browser displays the Signal
Processing Blockset Roadmap page.

3 Under the “Printable (PDF) Documentation on the Web” section,
click the links to view PDF versions of the Signal Processing Blockset
documentation.

Using This Guide
To help you effectively read and use this guide, here is a brief description of
the chapters and a suggested reading path.

Expected Background
This manual assumes that you are already familiar with

• MATLAB, to write scripts and functions with M-code, and to use functions
with the command-line interface

• Simulink, to create simple models as block diagrams and simulate those
models

What Chapters Should I Read?
If You Are a New User — In the Getting Started Guide:

• Read Chapter 1, “Introduction” to learn about the installation process,
the products required to run Signal Processing Blockset, and to view the
Signal Processing Blockset demos.

1-11



1 Introduction

• Read Chapter 2, “Signal Processing Blockset Overview” to learn about
Signal Processing Blockset functionality, review key concepts and
terminology, and find out more about product features.

• Read Chapter 3, “Signal Processing Models” to learn how to build a signal
processing model and simulate its behavior.

• Read Chapter 4, “Filters” to create an adaptive noise cancellation system
using digital and adaptive filters.

• Read Chapter 5, “Code Generation” to generate C code from your signal
processing model.

• Read Chapter 6, “Frequency Domain Signals” to learn how to view the
spectral content of a speech signal.

If You Are an Experienced Signal Processing Blockset User — In the
User’s Guide:

• Read Chapter 1, “Working with Signals” and Chapter 2, “Advanced Signal
Concepts” for details on key operations common to many signal processing
tasks.

• Read the following chapters for discussions of how to implement various
signal processing operations:

- Chapter 3, “Filters”

- Chapter 4, “Transforms”

- Chapter 5, “Quantizers”

- Chapter 6, “Statistics, Estimation, and Linear Algebra”

- Chapter 7, “Data Type Support”

- Chapter 8, “Working with Fixed-Point Data”

• See the block reference for a description of each block’s operation,
parameters, and characteristics.

1-12



2

Signal Processing Blockset
Overview

Sample Model and Block Libraries
(p. 2-2)

Simulate a model that removes
noise from a signal, and learn the
process behind creating models and
accessing Signal Processing Blockset
blocks

Key Blockset Concepts (p. 2-10) Descriptions of the terminology used
in this guide

Features of Signal Processing
Blockset (p. 2-16)

Overview of the features of Signal
Processing Blockset

Configuring Simulink for Signal
Processing Models (p. 2-22)

Learn how to automatically
configure Simulink for signal
processing simulation



2 Signal Processing Blockset Overview

Sample Model and Block Libraries

In this section...

“Modeling System Behavior” on page 2-2

“Signal Processing Blockset Blocks” on page 2-5

Modeling System Behavior
Signal Processing Blockset can simulate the behavior of complex signal
processing systems. For example, the Acoustic Noise Canceler demo model in
this section illustrates some of the capabilities of Signal Processing Blockset.
In the model, the signal output at the upper port of the Acoustic Environment
subsystem is white noise. The signal output at the lower port is composed of
colored noise and a signal from a .wav file. This demo model uses an adaptive
filter to remove the noise from the signal output at the lower port. When you
run the model, you hear both noise and a person playing the drums. Over
time, the adaptive filter in the model filters out the noise so all you hear is
the person playing the drums.

Note Later, this manual shows you how to create a similar model.

1 Open the Acoustic Noise Canceler demo model by typing dspanc at the
MATLAB command prompt. The demo model and the dspanc/Waterfall
scope window open. The scope window is discussed later in this procedure.

2-2



Sample Model and Block Libraries

2 Run this demo by selecting Start from the Simulation menu.

3 As the demo runs, listen to the demo using your computer’s speakers. Over
time, as the filter coefficients change, the noise in the signal decreases and
you can hear the drums more clearly.

4 The dspanc/Waterfall scope window displays the behavior of the adaptive
filter’s filter coefficients. The following figure shows the scope window
when the simulation begins. Each plot represents the values of the filter
coefficients of a normalized LMS adaptive filter. In the figure, you can see
that they are initialized to zero. Also, the color of the plots fades from red
to yellow. The current filter coefficients are plotted in red. The other plots
represent the filter coefficients at previous simulation times.

2-3



2 Signal Processing Blockset Overview

The next figure shows the dspanc/Waterfall scope window when the filter
coefficients have reached their steady state.

2-4



Sample Model and Block Libraries

5 To speed up or slow down the rate of filter adaption, double-click the
switch attached to the blocks labeled Fast Adapt and Slow Adapt. Then,
double-click the switch attached to the blocks labeled Filter Select. If the
switch is connected to the block labeled Fast Adapt, the filter coefficients
reach steady state in a shorter period of time.

The “Adaptive Filters” section of the Signal Processing Blockset User’s Guide
contains more information on the Acoustic Noise Canceler demo.

Signal Processing Blockset Blocks
Signal Processing Blockset contains a collection of blocks that are organized
within nested libraries. These libraries are designed specifically for digital
signal processing applications, and include blocks for key operations such
as multirate and adaptive filtering, matrix manipulation, linear algebra,
statistics, and time-frequency transforms. You can locate these blocks using
the main Signal Processing Blockset library or the Simulink Library Browser:

2-5



2 Signal Processing Blockset Overview

Accessing Blocks Directly (p. 2-6) On Microsoft Windows and UNIX
platforms, use the Signal Processing
Blockset library to locate blocks.

Accessing Blocks with the Library
Browser (p. 2-8)

On Microsoft Windows platforms,
use the Simulink Library Browser
to locate Signal Processing Blockset
blocks.

Accessing Blocks Directly
You can access the main Signal Processing Blockset library from the MATLAB
command line. This procedure shows you how to open this library and locate
the Signal Processing source blocks:

1 Open the library by typing dsplib at the MATLAB command prompt.

The Signal Processing Blockset libraries are

• Signal Processing Sinks — Blocks used to display data in a scope or send
data to the MATLAB workspace

2-6



Sample Model and Block Libraries

• Signal Processing Sources — Blocks that create discrete-time or
continuous-time signals or import these signals from the MATLAB
workspace

• Filtering — Blocks used to design digital, analog, adaptive, and multirate
filters

• Transforms — Blocks that transform data into different domains

• Signal Operations — Blocks that perform operations such as convolution,
downsampling, upsampling, padding, and delaying the input

• Estimation — Blocks for linear prediction, parametric estimation, and
power spectrum estimation

• Statistics — Blocks that perform statistical operations such as
correlation, maximum, and mean

• Math Functions — Blocks used to perform mathematical operations,
matrix operations, and polynomial functions

• Quantizers — Blocks that create scalar and vector quantizers as well
as uniform encoders and decoders

• Signal Management — Blocks for buffering, selecting part of a signal,
modifying signal attributes, and edge detection

2 Double-click the Signal Processing Sources library. The library displays the
blocks it contains. You can use the blocks in the Signal Processing Sources
library to create discrete-time or continuous-time signals.

2-7



2 Signal Processing Blockset Overview

3 Drag any block into a model, double-click the block, and click Help to learn
more about the block’s functionality.

Accessing Blocks with the Library Browser
On Microsoft Windows platforms, starting Simulink displays the Simulink
Library Browser. One way to explore Signal Processing Blockset is to expand
the Signal Processing Blockset entry in the tree pane of this browser.

2-8



Sample Model and Block Libraries

For complete information about the Simulink Library Browser, see the
Simulink documentation.

2-9



2 Signal Processing Blockset Overview

Key Blockset Concepts

In this section...

“Signals” on page 2-10

“Sample Time” on page 2-10

“State” on page 2-11

“Sample-Based Signals” on page 2-11

“Frame-Based Signals” on page 2-12

“Tunable Parameters” on page 2-14

Signals
Signals in Simulink can be real or complex valued. They can be represented
with data types such as single-precision floating point, double-precision
floating point, or fixed point. Signals can be either sample based or frame
based, single channel or multichannel.

Sample Time
A discrete-time signal is a sequence of values that correspond to particular
instants in time. The time instants at which the signal is defined are the
signal’s sample times, and the associated signal values are the signal’s
samples. For a periodically sampled signal, the equal interval between any
pair of consecutive sample times is the signal’s sample period, Ts. The sample
rate, Fs, is the reciprocal of the sample period. It represents the number of
samples in the signal per second:

F
Ts

s
= 1

Note In the block parameters dialog boxes, the term sample time refers to
the sample period of the signal Ts.

2-10



Key Blockset Concepts

State
Some of the blocks in Signal Processing Blockset have state and others do not.
If a block does not have state, the block calculates its output using only the
current input. If a block has state, the output of the block depends on the
current input as well as past inputs and/or outputs.

Sample-Based Signals
A signal is sample based if it is propagated through the model one sample at a
time. To represent a single-channel sample-based signal, create a 1-by-1-by-T
matrix. Each matrix element represents one sample from the channel and T
is the total number of samples in the channel. To represent a multichannel
signal with M*N independent channels, create an M-by-N-by-T matrix. Each
matrix element represents one sample from a distinct channel and T is the
total number of samples in each channel.

Consider the following model.

The Signal From Workspace block outputs a sample-based signal. The Gain
block multiplies all the samples of the signal by two. Then, the Signal To
Workspace block outputs the signal to the MATLAB workspace in the form of

2-11



2 Signal Processing Blockset Overview

a variable called yout. The following figure is a symbolic representation of
how the single-channel, sample-based signal is propagated through the model.

If you type yout at the MATLAB command prompt after you run the model,
you see, in part:

yout(:,:,1) =

2

yout(:,:,2) =

4

yout(:,:,3) =

6

Because yout represents a single-channel, sample-based signal, each sample
of the signal is a different page of the output matrix.

Frame-Based Signals
A signal is frame based if it is propagated through a model one frame at a
time. A frame of data is a collection of sequential samples from a single
channel or multiple channels. One frame of a single-channel signal is
represented by a M-by-1 column vector. One frame of a multichannel signal is
represented by a M-by-N matrix. Each matrix column is a different channel,
and the number of rows in the matrix is the number of samples in each frame.

You can typically specify whether a signal is frame based or sample based
using a source block from the Signal Processing Sources library. Most other

2-12



Key Blockset Concepts

signal processing blocks preserve the frame status of an input signal, but
some do not.

The process of propagating frames of data through a model is called
frame-based processing. Because multiple samples can be processed at once,
the computational time of the model is improved. “Working with Signals” in
the Signal Processing Blockset User’s Guide contains more information about
frame-based processing.

Consider the following model.

The Signal From Workspace block outputs a frame-based signal as indicated
by the wide double lines that connect the blocks after the model is run.
Because the Samples per frame parameter of the block is set to 2, the
frame-based signal has two signals per frame. The Gain block multiplies
all the samples of this signal by two. Then, the Signal To Workspace block
outputs the signal to the MATLAB workspace in the form of a variable
called yout. The following figure is a symbolic representation of how the
frame-based signal is propagated through the model.

2-13



2 Signal Processing Blockset Overview

If, after you ran the model, you were to type yout at the MATLAB command
prompt, the following is a portion of what you would see:

yout =

2
4
6
8

10
12

Because yout represents a single-channel, frame-based signal, the output is a
column vector. Note that once you export your signal values into the MATLAB
workspace, they are no longer grouped into frames.

Tunable Parameters
There are some parameters that you can change, or tune, during simulation.
Many parameters cannot be changed while a simulation is running. This is
usually the case for parameters that directly or indirectly alter a signal’s
dimensions or sample rate.

How to Tune Parameters
To change a tunable parameter during simulation, double-click the block
to open its block parameters dialog box, change any tunable parameters to
the desired settings, and then click OK. The simulation now uses the new
parameter settings.

Note Opening a dialog box for a source block causes the simulation to pause.
While the simulation is paused, you can edit the parameter values. However,
you must close the dialog box to have the changes take effect and allow the
simulation to continue.

2-14



Key Blockset Concepts

Tunable Parameters During Simulation
In addition to changing tunable parameters during simulation when Simulink
is in Normal mode, you can also change tunable parameters when Simulink is
in Accelerator mode or External mode.

Note When a parameter is marked “Tunable” in a reference page, it is
tunable only when Simulink is in Normal mode, and not in Accelerator mode
or External mode, unless indicated otherwise.

For more information on tunable parameters, see the “Tunable Parameters”
section of the Simulink documentation.

2-15



2 Signal Processing Blockset Overview

Features of Signal Processing Blockset

In this section...

“Frame-Based Operations” on page 2-16

“Multirate Processing” on page 2-17

“Fixed-Point Support” on page 2-17

“Real-Time Code Generation” on page 2-18

“Adaptive and Multirate Filtering” on page 2-18

“Quantization” on page 2-18

“Statistical Operations” on page 2-19

“Linear Algebra” on page 2-19

“Parametric Estimation” on page 2-19

“Matrix Support” on page 2-20

“Data Type Support” on page 2-20

Frame-Based Operations
Most real-time signal processing systems optimize throughput rates
by processing data in “batch” or “frame-based” mode. By propagating
multisample frames instead of the individual signal samples, the signal
processing system can take advantage of the speed of signal processing
algorithm execution, while simultaneously reducing the demands placed on
the data acquisition (DAQ) hardware.

For an example of frame-based operations, open the LPC Analysis and
Synthesis of Speech demo by typing dsplpc at the MATLAB command
prompt. To run this demo, from the Simulation menu, select Start. A
frame-based signal is used for computation throughout the model.

For more information about frame-based signals, see “Frame-Based Signals”
on page 2-12.

2-16



Features of Signal Processing Blockset

Multirate Processing
Many Signal Processing Blockset blocks support multirate processing. This
means that one port can have a different sample time than another port on
the same block. Multirate processing is achieved by port-based sample time
support across the blocks. The multirate blocks can be found in the Multirate
Filters sublibrary, the Signal Operations library, and the Buffers sublibrary.

For more information, see “Inspecting Sample Rates and Frame Rates” in
the Signal Processing Blockset User’s Guide. See also “Models with Multiple
Sample Rates” in the Real-Time Workshop documentation.

Fixed-Point Support
Many of the blocks in Signal Processing Blockset have fixed-point support.
This allows you to design discrete-time dynamic signal processing systems
that use fixed-point arithmetic. Fixed-point support in Signal Processing
Blockset includes

• Signed two’s complement fixed-point data types

• Word sizes from 2 to 128 bits in simulation

• Word sizes from 2 to the size of a long in the Real-Time Workshop C
code-generation target

• Overflow handling, scaling, and rounding methods

• C code generation for deployment on a fixed-point embedded processor,
with Real-Time Workshop. The generated code uses all allowed simulation
data types supported by the embedded target, and automatically includes
all necessary shift and scaling operations.

Simulating your fixed-point development choices before implementing them
in hardware saves time and money. Signal Processing Blockset provides
built-in fixed-point operations that save time in simulation and provide
automatically optimized code.

For fixed-point blocks, Signal Processing Blockset and Real-Time Workshop
produce optimized fixed-point code ready for execution on a fixed-point
processor. All the choices you make during simulation with Signal Processing
Blockset in terms of scaling, overflow handling, and rounding methods

2-17



2 Signal Processing Blockset Overview

are automatically optimized in the generated code, without the need for
time-consuming and costly hand-optimized code.

For more information on fixed-point support in Signal Processing Blockset,
see “Working with Fixed-Point Data” in the Signal Processing Blockset User’s
Guide.

Real-Time Code Generation
For all Signal Processing Blockset blocks, Signal Processing Blockset and
Real-Time Workshop produce optimized, compact, ANSI/ISO C code.

You can find more information about this process in Chapter 5, “Code
Generation”.

Adaptive and Multirate Filtering
The Adaptive Filters and Multirate Filters sublibraries provide key tools
for the construction of advanced signal processing systems. You can use
adaptive filter block parameters to tailor signal processing algorithms to
application-specific environments.

For an example of adaptive filtering, open the LMS Adaptive Equalization
demo by typing lmsadeq at the MATLAB command prompt. Equalization
is important in the field of communications. It involves estimating and
eliminating dispersion present in communication channels. In this demo, the
LMS Filter block models the system’s dispersion. The plot of the squared
error demonstrates the effectiveness of this adaptive filter.

For more information on adaptive filters, see “Adaptive Filters” on page 4-9.
For more information on multirate filters, see “Multirate Filters” in the Signal
Processing Blockset User’s Guide.

Quantization
The process of quantization allows you to represent your input signal with
a finite number of values. This helps you to limit the bandwidth of your
transmitted signal. Signal Processing Blockset has a number of blocks that
can help you to design and implement scalar and vector quantizers. In the
main Signal Processing Blockset library, open the Quantizers library to view

2-18



Features of Signal Processing Blockset

the available blocks. See the block reference pages for any of these blocks to
find out more information about their functionality.

For more information about quantization, see “Analysis and Synthesis of
Speech” in the Signal Processing Blockset User’s Guide.

Statistical Operations
Use the blocks in the Statistics library for basic statistical analysis. These
blocks calculate measures of central tendency and spread such as mean,
standard deviation, and so on. They can also calculate the frequency
distribution of input values.

See “Statistics” in the Signal Processing Blockset User’s Guide for more
information.

Linear Algebra
The Matrices and Linear Algebra sublibrary provides Cholesky, LU, LDL,
and QR matrix factorization methods and equation solvers based on these
methods. It also provides blocks for common matrix operations.

See “Linear Algebra” in the Signal Processing Blockset User’s Guide for more
information.

Parametric Estimation
The Parametric Estimation sublibrary provides a number of methods for
modeling a signal as the output of an AR system. The methods include the
Burg AR Estimator, Covariance AR Estimator, Modified Covariance AR
Estimator, and Yule-Walker AR Estimator, which allow you to compute the
AR system parameters based on forward error minimization, backward error
minimization, or both.

In the Comparison of Spectral Analysis Techniques demo, dspsacomp, a
Gaussian noise sample is filtered by an IIR all-pole filter. Three different
blocks, each with its own method, estimate the spectrum of the IIR filter.

2-19



2 Signal Processing Blockset Overview

Matrix Support
Signal Processing Blockset takes full advantage of the matrix format of
Simulink. Some typical uses of matrices in signal processing simulations are

• General two-dimensional array

A matrix can be used in its traditional mathematical capacity, as a simple
structured array of numbers. Most blocks for general matrix operations are
found in the Matrices and Linear Algebra sublibrary.

• Factored submatrices

A number of the matrix factorization blocks in the Matrix Factorizations
sublibrary store the submatrix factors (such as lower and upper
submatrices) in a single compound matrix. See the LDL Factorization and
LU Factorization blocks for examples.

• Multichannel frame-based signal

The standard format for multichannel frame-based signals is a matrix,
where each column represents a different channel. For example, a matrix
with three columns contains three channels of data. The number of rows in
the matrix is the number of samples in each frame.

The following sections of the Signal Processing Blockset User’s Guide provide
more information about working with matrices:

• “Creating Sample-Based Signals”

• “Creating Frame-Based Signals”

• “Creating Multichannel Sample-Based Signals”

• “Creating Multichannel Frame-Based Signals”

• “Deconstructing Multichannel Sample-Based Signals”

• “Deconstructing Multichannel Frame-Based Signals”

Data Type Support
All Signal Processing Blockset blocks support single- and double-precision
floating-point data types during both simulation and Real-Time Workshop
C code generation. Many blocks also support fixed-point and Boolean data
types. The following table lists all data types supported by Signal Processing

2-20



Features of Signal Processing Blockset

Blockset and which function or block to use when converting between data
types. To see which data types a particular block supports, see the “Supported
Data Types” section of the block’s reference page.

For more information, see “Data Type Support” in the Signal Processing
Blockset User’s Guide.

Supported Data Types

Data Types
Supported by Signal
Processing Blockset
Blocks

Functions and Blocks for
Converting Data Types Comments

Double-precision
floating point

• double

• Data Type Conversion block

Simulink built-in data type
supported by all Signal
Processing Blockset blocks

Single-precision floating
point

• single

• Data Type Conversion block

Simulink built-in data type
supported by all Signal
Processing Blockset blocks

Boolean • boolean

• Data Type Conversion block

Simulink built-in data type.
To learn more, see “Boolean
Support” in the Signal
Processing Blockset User’s
Guide.

Integer (8-,16-, or
32-bits)

• int8, int16, int32

• Data Type Conversion block

Simulink built-in data type.

Unsigned integer
(8-,16-, or 32-bits)

• uint8, uint16, uint32

• Data Type Conversion block

Simulink built-in data type.

Fixed-point data types • Data Type Conversion block

• Simulink Fixed Point num2fixpt
function

• Functions and GUIs for designing
quantized filters with the “Filter
Design Toolbox” (compatible with
Filter Realization Wizard block)

To learn more about
fixed-point data types
in Signal Processing
Blockset, see “Working
with Fixed-Point Data” in the
Signal Processing Blockset
User’s Guide.

2-21



2 Signal Processing Blockset Overview

Configuring Simulink for Signal Processing Models

In this section...

“Using dspstartup.m” on page 2-22

“Settings in dspstartup.m” on page 2-23

Using dspstartup.m
Signal Processing Blockset provides an M-file, dspstartup, that lets you
automatically configure Simulink for signal processing simulation. We
recommend these configuration parameters for models that contain Signal
Processing Blockset blocks. Because these blocks calculate values directly
rather than solving differential equations, you must configure the Simulink
Solver to behave like a scheduler. The Solver, while in scheduler mode, uses a
block’s sample time to determine when the code behind each block is executed.
For example, if the sample time of a Sine Wave block is 0.05, the Solver
executes the code behind this block and every other block with this sample
time once every 0.05 seconds.

Note When working with models that contains blocks from Signal Processing
Blockset, use source blocks that enable you to specify their sample time.
If your source block does not have a Sample time parameter, you must
add a Zero-Order Hold block in your model and use it to specify the sample
time. For more information, see “Continuous-Time Source Blocks” in the
Signal Processing Blockset User’s Guide. The exception to this rule is the
DSP Constant block, which can have a constant sample time. When it does,
Simulink executes this block and records the constant value once, which
allows for faster simulations and more compact generated code.

To use the dspstartup M-file to configure Simulink for signal processing
simulations, you can

• Type dspstartup at the MATLAB command line. All new models have
settings customized for signal processing applications. Existing models
are not affected.

2-22



Configuring Simulink for Signal Processing Models

• Place a call to dspstartup within the startup.m file. This is an efficient
way to use dspstartup if you would like these settings to be in effect
every time you start Simulink. For more information about performing
automated tasks at startup, see the documentation for the startup
command in the MATLAB Function Reference.

The dspstartup M-file executes the following commands:

set_param(0, ...
'SingleTaskRateTransMsg','error', ...
'multiTaskRateTransMsg', 'error', ...
'Solver', 'fixedstepdiscrete', ...
'SolverMode', 'SingleTasking', ...
'StartTime', '0.0', ...
'StopTime', 'inf', ...
'FixedStep', 'auto', ...
'SaveTime', 'off', ...
'SaveOutput', 'off', ...
'AlgebraicLoopMsg', 'error', ...
'SignalLogging', 'off');

set_param(getActiveConfigSet(0), 'RollThreshold', 2);

You can edit the dspstartup M-file to change any of the settings above or to
add your own custom settings. For complete information about these settings,
see the Simulink documentation.

Settings in dspstartup.m
A number of the settings in the dspstartup M-file are chosen to improve
the performance of the simulation:

• 'SaveTime' is set to 'off'.

Simulink does not save the tout time-step vector to the workspace.
The time-step record is not usually needed for analyzing discrete-time
simulations, and disabling it saves a considerable amount of memory,
especially when the simulation runs for an extended period of time.

• 'SaveOutput' is set to 'off'.

Simulink Outport blocks in the top level of a model do not generate an
output (yout) in the workspace.

2-23



2 Signal Processing Blockset Overview

• set_param(getActiveConfigSet(0), 'RollThreshold', 2); sets
loop-rolling threshold to 2.

This parameter only applies to code generation. By default, Real-Time
Workshop “unrolls” a given loop into inline code when the number of loop
iterations is less than five. This avoids the overhead of servicing the loop
in cases when inline code can be used with only a modest increase in the
file size.

However, because typical DSP processors offer zero-overhead looping, code
size is the primary optimization constraint in most designs. It is more
efficient to minimize code size by generating a loop for every instance of
iteration, regardless of the number of repetitions.

• 'Stop time'is set to 'Inf'.

The simulation runs until you manually stop it by selecting Stop from
the Simulation menu.

• 'Solver' is set to 'fixedstepdiscrete'.

This selects the fixed-step solver option instead of the Simulink default
variable-step solver. This mode enables code generation from the model
using Real-Time Workshop.

2-24



3

Signal Processing Models

Creating a Block Diagram (p. 3-2) Build a Simulink model using Signal
Processing Blockset blocks

Setting the Model Parameters
(p. 3-6)

Specify your model’s parameter
values

Running the Model (p. 3-8) Run the model and view its behavior
over time

Modifying Your Model (p. 3-11) Add noise to your input signal and
view its effect on your system



3 Signal Processing Models

Creating a Block Diagram
You can build signal processing models using functionality from many
different Simulink and Signal Processing Blockset libraries. In this section,
you move through the tasks needed to create a signal processing model that
displays a sine wave over time:

• Opening a new model

• Dragging blocks into the model

• Connecting the blocks

In subsequent procedures, you set the block parameters and run the model.
Later in the book, you expand upon this model to create a system capable of
adaptive noise cancellation. You also use Real-Time Workshop to generate
code from this model:

1 Begin building your model. Open the main Signal Processing Blockset
library by typing dsplib at the MATLAB command prompt.

3-2



Creating a Block Diagram

2 Open a new model by selecting File > New > Model n the Signal
Processing Blockset library window.

3 Display the Signal Processing Sources library by double-clicking the Signal
Processing Sources icon in the main library window.

3-3



3 Signal Processing Models

4 Click-and-drag a Sine Wave block into your new model. The Sine Wave
block generates a sinusoidal signal.

3-4



Creating a Block Diagram

5 Double-click the Signal Processing Sinks library, and click-and-drag the
Time Scope block into your model.

6 Connect the two blocks by selecting the Sine Wave block, holding down the
Ctrl key, and then selecting the Time Scope block.

Now that you have created a model, you are ready to set your model
parameters.

3-5



3 Signal Processing Models

Setting the Model Parameters
Once you have built your signal processing model, you can set your model
parameters. Nearly all blocks have an associated block parameters dialog
box. Double-click the block to display this dialog box. Enter values into this
dialog box to ensure that your model accurately represents the behavior of
your system.

Note The software provides premade models as starting points to each
procedure in this manual. To prevent yourself from overwriting these models,
from the File menu, select Save as. Then, save your modified model in
a different directory.

1 If the model you created in “Creating a Block Diagram” on page 3-2 is not
open on your desktop, you can open an equivalent model by typing

doc_gstut1

at the MATLAB command prompt.

2 Open the Sine Wave dialog box by double-clicking the Sine Wave block.

3 Set the block parameters as follows:

• Frequency (Hz) = 0.5

• Sample time = 0.05

3-6



Setting the Model Parameters

Note In Signal Processing Blockset, the Sample time parameter
represents the sample period of the signal. The sample period is the
amount of time between each sample of the signal.

4 Click OK to apply the settings and close the dialog box.

Now that you have set your model parameters, you are ready to run your
model and view its behavior.

3-7



3 Signal Processing Models

Running the Model
After you set the desired model parameters, you can run your model and
view its behavior. Signal Processing Blockset has many scope blocks that you
can use to display your model output. In this section, you use a Time Scope
block to view your sinusoidal signal:

1 If the model you created in “Setting the Model Parameters” on page 3-6 is
not open on your desktop, you can open an equivalent model by typing

doc_gstut2

at the MATLAB command prompt.

2 Run the model by selecting Start from the Simulation menu.

3 Display the sinusoidal signal in the Time Scope window by double-clicking
the Time Scope block.

4 Autoscale the output to fit in the scope window by clicking .

3-8



Running the Model

You can achieve a more finely sampled output by decreasing the Sample
time parameter. For example, change the Sample time parameter in the
Sine Wave block to 0.005, run the model, and autoscale the output. The
Time Scope window should now look similar to the following figure.

5 Experiment with your model. Change the Frequency (Hz) and Sample
time parameters of the Sine Wave block. Then, run your model to see
the effect.

3-9



3 Signal Processing Models

Now that you have run your model, you are ready to add noise to your
sinusoidal signal and view its effect.

3-10



Modifying Your Model

Modifying Your Model
A system’s input signal can contain noise that was introduced as the signal
traveled over a wire or through the air. You can incorporate noise into the
model of your system to simulate this real-world noise. Then, you can
experiment with ways to eliminate its effect at both low and high frequencies.
In this topic, you model a real-world signal by adding noise to your input
signal. In the next chapter, you use a filter to convert this noise to low
frequency noise and another filter to eliminate this noise from your signal:

1 If the model you worked with in “Running the Model” on page 3-8 is not
open on your desktop, you can open an equivalent model by typing

doc_gstut2

at the MATLAB command prompt.

2 Add a Random Source block to your model from the Signal Processing
Sources library to represent the noise in your system. Set the block
parameters before you connect the blocks. Double-click the Random Source
block and set the block parameters as follows:

• Source type = Gaussian

• Method = Ziggurat

• Mean = 0

• Variance = 1

• Repeatability = Specify seed

• Initial seed = [23341]

• Sample time = 0.05

Based on these parameters, the Random Source block produces Gaussian
random values using the Ziggurat method. The Repeatability and
Initial seed parameters ensure that the block outputs the same signal
each time you run the model. The figure below shows the completed
Random Source dialog box.

3-11



3 Signal Processing Models

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the online
Simulink documentation for details.

3 Add a Sum block to your model from the Simulink Math Operations library
to add random noise to your input signal.

4 Set the Sum block parameters. Open the Sum dialog box by double-clicking
the Sum block. Change the List of signs parameter to ++| and click OK.

3-12



Modifying Your Model

5 Set the Time Scope parameters. Open the Time Scope window by
double-clicking the Time Scope block. Open the Time Scope parameters
dialog box by clicking on the Parameters icon in the Time Scope window.

In the Time Scope parameters dialog box, set the Number of axes
parameter to 2 and click OK. Now, the Time Scope window has two plotting
windows and the Time Scope block has two input ports.

6 Connect the output of the Sine Wave block and the output of the Random
Source block to the input of the Sum block. Then, connect the output of

3-13



3 Signal Processing Models

the Sum block to the second input of the Time Scope block. When you are
finished, your model should look similar to the figure shown below.

7 Verify the parameters of your Sine Wave block. Open the Sine Wave dialog
box by double-clicking the Sine Wave block. Verify that the Frequency
(Hz) parameter is set to 0.5 and the Sample time parameter is set to
0.05. Note that the value of the Sample time parameter of the Sine
Wave block is the same as the value of the Sample time parameter of
the Random Source block.

8 Run your model and view the results in the Time Scope window. The block
displays the original sinusoidal signal in the top axes and the signal with
the noise in the bottom axes.

3-14



Modifying Your Model

Note You can change the signal labels in the Time Scope window by
right-clicking on the axes and selecting Axes properties. In the Title text
box, enter your signal label.

You have now created and run a signal processing model that displays a
sinusoidal signal over time. During this process, you created a digital sine
wave and viewed it in the Time Scope window. You also added noise to your
sinusoidal signal and viewed its effect. In Chapter 4, “Filters” you increase
the complexity of your signal processing model by adding filters to eliminate
the presence of this noise.

3-15



3 Signal Processing Models

3-16



4

Filters

Digital Filters (p. 4-2) Design a digital lowpass filter
and incorporate it into your model
to simulate the presence of low
frequency noise

Adaptive Filters (p. 4-9) Design an adaptive filter and use it
to recover your original sinusoidal
signal



4 Filters

Digital Filters

In this section...

“Designing a Digital Filter” on page 4-2

“Adding a Digital Filter to Your Model” on page 4-6

Designing a Digital Filter
You can design lowpass, highpass, bandpass, and bandstop filters using either
the Digital Filter Design block or the Filter Realization Wizard. These blocks
are capable of calculating filter coefficients for various filter structures. In
Chapter 3, “Signal Processing Models” you added white noise to a sine wave
and viewed the resulting signal on a scope. In this section, you use the Digital
Filter Design block to convert this white noise to low frequency noise so you
can simulate its effect on your system.

As a practical application, suppose a pilot is speaking into a microphone
within the cockpit of an airplane. The noise of the wind passing over the
fuselage is also reaching the microphone. A sensor is measuring the noise of
the wind on the outside of the plane. You want to estimate the wind noise
inside the cockpit and subtract it from the input to the microphone so only the
pilot’s voice is transmitted. In this chapter, you first learn how to model the
low frequency noise that is reaching the microphone. Later, you learn how to
remove this noise so that only the pilot’s voice is heard.

In this topic, you use a Digital Filter Design block to create low frequency
noise, which models the wind noise inside the cockpit:

1 If the model you created in “Modifying Your Model” on page 3-11 is not open
on your desktop, you can open an equivalent model by typing

doc_gstut3

at the MATLAB command prompt. This model contains a Time Scope
block that displays the original sine wave and the sine wave with white
noise added.

4-2



Digital Filters

2 Open the Signal Processing Blockset library by typing dsplib at the
MATLAB command prompt.

3 Convert white noise to low frequency noise by introducing a Digital Filter
Design block into your model. In the airplane scenario, the air passing
over the fuselage creates white noise which is measured by a sensor.
This noise is modeled by the Random Source block. The fuselage of the
airplane converts this white noise to low frequency noise, a type of colored
noise, which is heard inside the cockpit. This noise contains only certain
frequencies and is more difficult to eliminate. In this example, you model
the low frequency noise using a Digital Filter Design block. This block
uses the functionality of the Filter Design and Analysis Tool (FDATool) to
design a filter. Double-click the Filtering library, and then double-click the
Filter Designs sublibrary. Click-and-drag the Digital Filter Design block
into your model.

4-3



4 Filters

4 Set the Digital Filter Design block parameters to design a lowpass filter
and create low frequency noise. Open the Digital Filter Design dialog box
by double-clicking the block. Set the block parameters as follows:

• Response Type = Lowpass

• Design Method = FIR and, from the list, choose Window

• Filter Order = Specify order and enter 31

• Scale Passband — Cleared

• Window = Hamming

• Units = Normalized (0 to 1)

• wc = 0.5

Based on these parameters, the Digital Filter Design block designs a
lowpass FIR filter with 32 coefficients and a cutoff frequency of 0.5. The
block multiplies the time-domain response of your filter by a 32 sample
Hamming window.

4-4



Digital Filters

5 Click Design Filter at the bottom center of the dialog box to view the
magnitude response of your filter in the Magnitude Response pane. The
Digital Filter Design dialog box should now look similar to the following
figure.

You have now designed a digital lowpass filter using the Digital Filter Design
block.

You can experiment with the Digital Filter Design block in order to design a
filter of your own. For more information on the block functionality, see the
Digital Filter Design block reference page in the Signal Processing Blockset
User’s Guide. For more information on the Filter Design and Analysis Tool,

4-5



4 Filters

see “FDATool: A Filter Design and Analysis GUI” in the Signal Processing
Toolbox documentation.

Adding a Digital Filter to Your Model
In this topic, you add the lowpass filter you designed in “Designing a Digital
Filter” on page 4-2 to your block diagram. Use this filter, which converts
white noise to colored noise, to simulate the low frequency wind noise inside
the cockpit:

1 If the model you created in “Designing a Digital Filter” on page 4-2 is not
open on your desktop, you can open an equivalent model by typing

doc_gstut4

at the MATLAB command prompt.

2 Incorporate the Digital Filter Design block into your block diagram by
placing it between the Random Source block and the Sum block.

4-6



Digital Filters

3 Run your model and view the results in the Time Scope window. This
window shows the original input signal and the signal with low frequency
noise added to it.

4-7



4 Filters

You have now built a digital filter and used it to model the presence of colored
noise in your signal. This is analogous to same as modeling the low frequency
noise reaching the microphone in the cockpit of the aircraft. Now that you
have added noise to your system, you can experiment with methods to
eliminate it.

4-8



Adaptive Filters

Adaptive Filters

In this section...

“Designing an Adaptive Filter” on page 4-9

“Adding the Adaptive Filter to Your Model” on page 4-13

“Viewing the Coefficients of Your Adaptive Filter” on page 4-17

Designing an Adaptive Filter
Adaptive filters track the dynamic nature of a system and allow you to
eliminate time-varying signals. The Signal Processing Blockset libraries
contain blocks that implement least-mean-square (LMS), Block LMS, Fast
Block LMS, and recursive least squares (RLS) adaptive filter algorithms.
These filters minimize the difference between the output signal and the
desired signal by altering their filter coefficients. Over time, the adaptive
filter’s output signal more closely approximates the signal you want to
reproduce.

In this topic, you design an LMS adaptive filter to remove the low frequency
noise in your signal:

1 If the model you created in “Adding a Digital Filter to Your Model” on page
4-6 is not open on your desktop, you can open an equivalent model by typing

doc_gstut5

at the MATLAB command prompt.

4-9



4 Filters

2 Open the Signal Processing Blockset library by typing dsplib at the
MATLAB command prompt.

3 Remove the low frequency noise from your signal by adding an LMS
Filter block to your system. In the airplane scenario, this is equivalent
to subtracting the wind noise inside the cockpit from the input to the
microphone. Double-click the Filtering sublibrary, and then double-click
the Adaptive Filters library. Add the LMS Filter block into your model.

4-10



Adaptive Filters

4 Set the LMS Filter block parameters to model the output of the Digital
Filter Design block. Open its dialog box by double-clicking the block. Set
the block parameters as follows:

• Algorithm = Normalized LMS

• Filter length = 32

• Specify step size via = Dialog

• Step size (mu) = 0.1

• Leakage factor (0 to 1) = 1.0

• Initial value of filter weights = 0

• Clear the Adapt port check box.

• Reset port = None

• Select the Output filter weights check box.

4-11



4 Filters

5 Click Apply.

Based on these parameters, the LMS Filter block computes the filter weights
using the normalized LMS equations. The filter order you specified is the
same as the filter order of the Digital Filter Design block. The Step size (mu)
parameter defines the granularity of the filter update steps. Because you set
the Leakage factor (0 to 1) parameter to 1.0, the current filter coefficient
values depend on the filter’s initial conditions and all of the previous input
values. The initial value of the filter weights (coefficients) is zero. Since you
selected the Output filter weights check box, the Wts port appears on the
block. The block outputs the filter weights from this port. When you are

4-12



Adaptive Filters

finished setting the parameters, the LMS Filter dialog box should look like
the following figure.

Now that you have set the block parameters of the LMS Filter block, you can
incorporate this block into your block diagram.

Adding the Adaptive Filter to Your Model
In this topic, you recover your original sinusoidal signal by incorporating the
adaptive filter you designed in “Designing an Adaptive Filter” on page 4-9
into your system. In the aircraft scenario, the adaptive filter models the low
frequency noise heard inside the cockpit. As a result, you can remove the
noise so that the pilot’s voice is the only input to the microphone:

1 If the model you created in “Designing an Adaptive Filter” on page 4-9 is
not open on your desktop, you can open an equivalent model by typing

doc_gstut6

at the MATLAB command prompt.

4-13



4 Filters

2 Add a Sum block to your model to subtract the output of the adaptive filter
from the sinusoidal signal with low frequency noise. From the Simulink
Math Operations library, drag a Sum block into your model. Open the
Sum dialog box by double-clicking this block. Change the List of signs
parameter to |+- and then click OK.

3 Incorporate the LMS Filter block into your system. Connect the output of
the Random Source block to the Input port of the LMS Filter block. In the
aircraft scenario, the random noise is the white noise measured by the
sensor on the outside of the airplane. The LMS Filter block models the
effect of the airplane’s fuselage on the noise. Connect the output of the
Digital Filter Design block to the Desired port on the LMS Filter block.
This is the signal you want the LMS block to reproduce. Connect the output
of the LMS Filter block to the negative port of the second Sum block, i.e.,
the Sum block you added in step 2. Connect the output of the first Sum

4-14



Adaptive Filters

block to the positive port of the second Sum block. Your model should now
look similar to the following figure.

The positive input to the second Sum block is the sum of the input signal

and the low frequency noise, s n y( ) + . The negative input to the second
Sum block is the LMS Filter block’s best estimation of the low frequency

noise, y ’ . When you subtract the two signals, you are left with an
approximation of the input signal.

s n s n y yapprox( ) ( ) ’= + −

In this equation, s n( ) is the input signal, s n approx( ) is the approximation of
the input signal, y is the noise created by the Random Source block and the

Digital Filter Design block, and y ’ is the LMS Filter block’s approximation
of the noise. Because the LMS Filter block can only approximate the noise,

4-15



4 Filters

there is still a difference between the input signal and the approximation of
the input signal. In subsequent steps, you set up the Time Scope block so
you can compare the original sinusoidal signal with its approximation.

4 Add two additional inputs and axes to the Time Scope block. Open the
Time Scope dialog box by double-clicking the Time Scope block. Click the
Parameters button. For the Number of axes parameter, enter 4. Close
the dialog box by clicking OK.

5 Label the new Time Scope axes. In the Time Scope window, right-click on
the third axes and point to Axes properties. The Time Scope properties:
axis 3 dialog box opens. In the Title box, enter Approximation of Input
Signal. Close the dialog box by clicking OK. Repeat this procedure for
the fourth axes and label it Error.

6 Connect the output of the second Sum block to the third port of the Time
Scope block. Connect the output of the Error port on the LMS Filter block
to the fourth port of the Time Scope block. Your model should now look
similar to the following figure.

4-16



Adaptive Filters

In this example, the output of the Error port is the difference between the
LMS filter’s desired signal and its output signal. Because the error is never
zero, the filter continues to modify the filter coefficients in order to better
approximate the low frequency noise. The better the approximation, the more
low frequency noise that can be removed from the sinusoidal signal. In the
next topic, “Viewing the Coefficients of Your Adaptive Filter” on page 4-17,
you learn how to view the coefficients of your adaptive filter as they change
with time.

Viewing the Coefficients of Your Adaptive Filter
The coefficients of an adaptive filter change with time in accordance with a
chosen algorithm. Once the algorithm optimizes the filter’s performance,
these filter coefficients reach their steady-state values. You can view the
variation of your coefficients, while the simulation is running, to see them
settle to their steady-state values. Then, you can determine whether you can
implement these values in your actual system:

4-17



4 Filters

1 If the model you created in “Adding the Adaptive Filter to Your Model” on
page 4-13 is not open on your desktop, you can open an equivalent model
by typing

doc_gstut7

at the MATLAB command prompt. Note that the Wts port of the adaptive
filter, which outputs the filter weights, still needs to be connected.

2 Open the Signal Processing Blockset library by typing dsplib at the
MATLAB command prompt.

4-18



Adaptive Filters

3 View the filter coefficients using a Vector Scope block from the Signal
Processing Sinks library.

4 Open the Vector Scope dialog box by double-clicking the block. Set the
block parameters as follows:

a Click the Scope Properties tab.

• Input domain = Time

• Time display span (number of frames) = 1

b Click the Display Properties tab.

• Select the following check boxes:

– Show grid

– Frame number

– Compact display

– Open scope at start of simulation

c Click the Axis Properties tab.

• Minimum Y-limit = -0.2

• Maximum Y-limit = 0.6

• Y-axis title = Filter Weights

d Click the Line Properties tab.

• Line visibilities = on

• Line style = :

• Line markers =.

• Line colors = [0 0 1]

5 Connect the Wts port of the LMS Filter block to the Vector Scope block.

4-19



4 Filters

6 Set the configuration parameters:

a Open the Configuration Parameters dialog box by selecting
Configuration Parameters from the Simulation menu, and navigate
to the Solver pane.

b Enter inf for the Stop time parameter.

c Choose Fixed-step from the Type list.

d Choose discrete (no continuous states) from the Solver list.

We recommend these configuration parameters for models that contain
Signal Processing Blockset blocks. Because these blocks calculate values

4-20



Adaptive Filters

directly rather than solving differential equations, you must configure the
Simulink Solver to behave like a scheduler. The Solver, while in scheduler
mode, uses a block’s sample time to determine when the code behind each
block is executed. For example, the sample time of the Sine Wave and
Random Source blocks in this model is 0.05. The Solver executes the code
behind these blocks, and every other block with this sample time, once
every 0.05 second.

Note When working with models that contain blocks from Signal
Processing Blockset, use source blocks that enable you to specify their
sample time. If your source block does not have a Sample time parameter,
you must add a Zero-Order Hold block in your model and use it to specify
the sample time. For more information, see “Continuous-Time Source
Blocks” in the Signal Processing Blockset User’s Guide. The exception to
this rule is the DSP Constant block, which can have a constant sample time.
When it does, Simulink executes this block and records the constant value
once, which allows for faster simulations and more compact generated code.

7 Close the dialog box by clicking OK.

8 Open the Time Scope window by double-clicking the Time Scope block.

9 Run your model and view the behavior of your filter coefficients in the
Vector Scope window, which opens automatically when your simulation
starts. Over time, you see the filter coefficients change and approach their
steady-state values, shown below.

4-21



4 Filters

You can simultaneously view the behavior of the system in the Time Scope
window. Over time, you see the error decrease and the approximation of
the input signal more closely match the original sinusoidal input signal.

4-22



Adaptive Filters

You have now created a model capable of adaptive noise cancellation. So
far, you have learned how to design a lowpass filter using the Digital Filter
Design block. You also learned how to create an adaptive filter using the LMS
Filter block. Signal Processing Blockset has other blocks capable of designing
and implementing digital and adaptive filters. For more information on the
filtering capabilities of Signal Processing Blockset, see “Filters” in the Signal
Processing Blockset User’s Guide.

Because all blocks in this model have the same sample time, this model is
single rate and Simulink ran it in SingleTasking solver mode. If the blocks
in your model have different sample times, your model is multirate and
Simulink might run it in MultiTasking solver mode. For more information on
solver modes, see “Recommended Settings for Discrete-Time Simulations” in
the Signal Processing Blockset User’s Guide.

In Chapter 5, “Code Generation” you use Real-Time Workshop to generate
code from your model.

4-23



4 Filters

4-24



5

Code Generation

Understanding Code Generation
(p. 5-2)

Learn how Real-Time Workshop
generates code from your model

Generating Code (p. 5-4) Generate an executable from your
model and view the generated source
code



5 Code Generation

Understanding Code Generation

In this section...

“Code Generation with Real-Time Workshop” on page 5-2

“Highly Optimized Generated C Code” on page 5-3

Code Generation with Real-Time Workshop
Signal Processing Blockset, Real-Time Workshop, and Real-Time Workshop
Embedded Coder enable you to generate code that you can use to implement
your model for a practical application. For instance, you can create an
executable from your Simulink model to run on a target chip.

This chapter introduces you to the basic concepts of code generation using
these tools. For more information on code generation, see “Code Generation
and the Build Process” in the Real-Time Workshop documentation. See
“Model Execution” in the Real-Time Workshop documentation for more
information on how the generated model code is executed.

Windows Dynamic Library Dependencies
To run executables generated for Generic Real-Time (GRT), Embedded
Real-Time (ERT), and S-Function targets, you need dsp_rt.dll if

• The Real-Time Workshop target is a Windows platform and

• You are using the default Real-Time Workshop optimization parameters

For more information about Real-Time Workshop optimization parameters,
see “Generated Source Files and File Dependencies” in the Real-Time
Workshop documentation.

Copy dsp_rt.dll from the machine where Signal Processing Blockset is
installed to a directory on the system path of a different machine if you use

• Real-Time Workshop with Signal Processing Blockset on Windows to
generate standalone executables for GRT, ERT, or S-Function targets and

5-2



Understanding Code Generation

• You want to run these executables on a Windows machine where Signal
Processing Blockset is not installed

The library dsp_rt.dll resides in matlabroot/bin/win32 on the machine
where MATLAB and Signal Processing Blockset are installed.

Highly Optimized Generated C Code
All Signal Processing Blockset blocks generate highly optimized ANSI/ISO
C code. This C code is often suitable for embedded applications, and includes
the following optimizations:

• Function reuse (run-time libraries) — The generated code reuses
common algorithmic functions via calls to run-time functions. Run-time
functions are highly optimized ANSI/ISO C functions that implement
core algorithms such as FFT and convolution. Run-time functions are
precompiled into ANSI/ISO C run-time libraries, and enable the blocks to
generate smaller, faster code that requires less memory.

• Parameter reuse (Real-Time Workshop run-time parameters) — In
many cases, if there are multiple instances of a block that all have the
same value for a specific parameter, each block instance points to the same
variable in the generated code. This process reduces memory requirements.

• Blocks have parameters that affect code optimization — Various
blocks, such as the FFT and Sine Wave blocks, have parameters that
enable you to optimize the simulation for memory or for speed. These
optimizations also apply to code generation.

• Other optimizations — Use of contiguous input and output arrays,
reusable inputs, overwritable arrays, and inlined algorithms provide
smaller generated C code that is more efficient at run-time.

5-3



5 Code Generation

Generating Code

In this section...

“Setting Up the Build Directory” on page 5-4

“Setting Configuration Parameters” on page 5-5

“Generating Code” on page 5-10

“Viewing the Generated Code” on page 5-11

Note You must have both Signal Processing Blockset and Real-Time
Workshop installed on your computer to complete this section’s procedures.

Setting Up the Build Directory
First, you need to create a filter directory and put a local copy of your model in
it. Real-Time Workshop creates a build directory within this filter directory
during code generation. The build directory name is model_target_rtw,
derived from the name of the source model and the selected target. The build
directory contains generated source code and other files created during the
build process. This procedure assumes that your filter directory resides on
drive D: (PC) or your home directory (UNIX):

1 Set up your filter directory by typing

!mkdir d:\filter_example

on a PC, or

!mkdir ~/filter_example

on UNIX.

The “!” character passes the command that follows it to the operating
system, which creates the directory.

2 Make this your working directory by typing cd d:\filter_example.

5-4



Generating Code

3 If the model you created in “Viewing the Coefficients of Your Adaptive
Filter” on page 4-17 is not open on your desktop, you can open an equivalent
model by typing

doc_gstut8

at the MATLAB command prompt.

4 Save this model as gstut8.mdl in your new working directory.

Setting Configuration Parameters
Before you can generate code, you must set several model parameters using
the Configuration Parameters dialog box. To learn how to configure your
model and Real-Time Workshop so that your generated code accurately
reflects your system, see the following topics:

• “Selecting a Solver Algorithm” on page 5-5

• “Selecting a Target Configuration” on page 5-6

• “Controlling Other Code Generation Options” on page 5-9

In these procedures, you continue to work with gstut8.mdl, the model you
saved in your working directory in “Setting Up the Build Directory” on page
5-4.

Selecting a Solver Algorithm
Specify parameters that enable Simulink to solve your model:

1 Open the Configuration Parameters dialog box for this model by selecting
Configuration Parameters from the Simulation menu.

2 In the Select pane, click Solver. Set the parameters as follows, and then
click OK:

• Start Time = 0.0

• Stop Time = 60.0

• Type = Fixed-step

• Solver = discrete (no continuous states)

5-5



5 Code Generation

• Fixed step size (fundamental sample time) = 0.01

• Tasking mode for periodic sample times = SingleTasking

3 Click Apply.

When you are finished setting the parameters, the Solver pane should look
similar to the following figure.

Selecting a Target Configuration
All Signal Processing Blockset blocks support the following code generation
targets:

• Generic Real-Time (GRT) target

• Embedded Real-Time (ERT) target

The MathWorks supplies the Generic Real-Time (GRT) target with Real-Time
Workshop. This target uses the real-time code format and supports external

5-6



Generating Code

mode communication. You can use this target as a starting point when
creating a custom rapid prototyping target, or for validating the generated
code on your workstation.

The MathWorks supplies the Embedded Real-Time (ERT) target with
Real-Time Workshop Embedded Coder. This is a separate product
from Real-Time Workshop. This target configuration generates model
code for execution on an independent embedded real-time system. For
more information about Real-Time Workshop Embedded Coder, see
http://www.mathworks.com/products/rtwembedded/.

A target configuration consists of system target file, a template makefile,
and a make command. In most situations, rather than specifying these
parameters individually, you use the ready-to-run generic real-time target
configuration. This GRT target is designed to build a stand-alone executable
program that runs on your workstation:

1 If you have not already done so, open the Configuration Parameters dialog
box. In the Select pane, click Real-Time Workshop.

5-7

http://www.mathworks.com/products/rtwembedded/


5 Code Generation

2 Make sure that the Generate code only check box is not selected. If you
select this check box, Real-Time Workshop does not generate an executable
after it has created source code.

3 Select a target configuration. Open the System target file browser
dialog box by clicking Browse next to the RTW system target file
box. The System target file browser displays a list of all currently
available target configurations. When you select a target configuration,
Real-Time Workshop automatically chooses the appropriate system target
file, template makefile, and make command. From the list of available
configurations, select Generic Real-Time Target and then click OK.

The Real-Time Workshop pane now displays the correct system target
file (grt.tlc), make command (make_rtw). and template makefile
(grt_default_tmf).

5-8



Generating Code

Controlling Other Code Generation Options
There are a number of additional options that you can set using the
Configuration Parameters dialog box:

1 If you have not already done so, open the Configuration Parameters dialog
box.

2 Prevent data from being logged to the MATLAB workspace. In the Select
pane, click Data Import/Export, and then clear the Time and Output
check boxes. These check boxes control whether or not the respective
variables are sent to the workspace.

3 Create a navigable summary of source files when the model is built. In the
Select pane, click Real-Time Workshop. Select the Generate HTML
report and Launch report automatically check boxes.

4 Make blocks that were eliminated as a result of optimizations appear as
comments in the generated code. In the Select pane, expand Real-Time

5-9



5 Code Generation

Workshop. Click Comments, and then select the Show eliminated
blocks check box.

5 View progress information during code generation. In the Select pane, click
Debug, and then select the Verbose build check box. When this option is
selected, the MATLAB Command Window displays progress information
during code generation. The compiler also reports its progress there.

6 Apply these settings and close this dialog box by clicking OK.

7 Save the model in your working directory. Your configuration parameters
are saved within the model file.

Once you have configured your model, you are ready to generate code.

Generating Code
After you set the configuration parameters, you can generate code from your
model. In this procedure, you continue to work with gstut8.mdl, the model
you saved in your working directory in “Setting Configuration Parameters”
on page 5-5:

1 Open the Configuration Parameters dialog box. In the Select pane, click
Real-Time Workshop.

2 To start the Real-Time Workshop build process, click Build at the bottom
of the Real-Time Workshop pane. A number of messages concerning code
generation and compilation appear in the MATLAB Command Window.
The initial messages are

### Starting Real-Time Workshop build procedure for model: gstut8

### Generating code into build directory:

d:\filter_example\gstut8_grt_rtw

The content of the succeeding messages depends on your compiler and
operating system. The final message is

### Successful completion of Real-Time Workshop build procedure for model: gstut8

3 Type dir at the MATLAB command prompt. The working directory now
contains a build directory, gstut8_grt_rtw, which Real-Time Workshop

5-10



Generating Code

created. Real-Time Workshop put the generated source files in this
directory.

You have now generated code from your signal processing model file.

Viewing the Generated Code
Once you have generated code from your Simulink model, you can view this
code in an HTML report. You asked Real-Time Workshop to create this report
by selecting the Generate HTML report check box. The HTML report is
a navigable summary of source files that you can view in the Real-Time
Workshop Report window:

1 View the code automatically generated by Real-Time Workshop. Select
the Real-Time Workshop Report window. You can use the links on the
left side of the report to view the different source and header files that
were generated.

2 To display one of the generated files, click the gstut8.c link in the
Generated Source Files list. The generated code is displayed as an HTML
file in the right side of the Real-Time Workshop Report window. Real-Time
Workshop produces an HTML file for each source file in a directory named
\html within the build directory.

5-11



5 Code Generation

You have now generated ANSI/ISO C code from your signal processing model
and viewed this code in an HTML report. For more information on code
generation, see the Real-Time Workshop documentation. For information
on generating fixed-point code, refer to “Code Generation” in the Simulink
Fixed Point documentation.

5-12



6

Frequency Domain Signals

Power Spectrum Estimates (p. 6-2) Create a model capable of calculating
the power spectrum estimate of a
speech signal

Spectrograms (p. 6-11) Modify the model to calculate and
display the spectrogram of a speech
signal



6 Frequency Domain Signals

Power Spectrum Estimates

In this section...

“Creating the Block Diagram” on page 6-2

“Setting the Model Parameters” on page 6-3

“Viewing the Power Spectrum Estimates” on page 6-8

Creating the Block Diagram
Up until now, you have been dealing with signals in the time domain. Signal
Processing Blockset is also capable of working with signals in the frequency
domain. You can use Signal Processing Blockset to perform fast Fourier
transforms (FFTs), power spectrum analysis, short-time FFTs, and many
other frequency-domain applications.

The power spectrum of a signal represents the contribution of every frequency
of the spectrum to the power of the overall signal. It is useful because
many signal processing applications, such as noise cancellation and system
identification, are based on frequency-specific modifications of signals.

First, assemble and connect the blocks needed to calculate the power spectrum
of your speech signal:

1 Open a new Simulink model.

2 Add the following blocks to your model. Subsequent topics describe how
to use these blocks.

Block Library

Signal From Workspace Signal Processing Sources

Buffer Signal Management / Buffers

Periodogram Estimation / Power Spectrum
Estimation

Vector Scope Signal Processing Sinks

3 Connect the blocks as shown in the figure below.

6-2



Power Spectrum Estimates

Once you have assembled the blocks needed to calculate the power spectrum
of your speech signal, you can set the block parameters.

Setting the Model Parameters
In the previous topic, you have assembled the blocks needed to calculate
the power spectrum of your speech signal. Now you need to set the block
parameters. These parameter values ensure that the model calculates the
power spectrum of your signal accurately:

1 If the model you created in “Creating the Block Diagram” on page 6-2 is not
open on your desktop, you can open an equivalent model by typing

doc_gstut9

at the MATLAB command prompt.

2 Load the speech signal into the MATLAB workspace by typing load mtlb
at the MATLAB command prompt. This speech signal is a woman’s voice
saying “MATLAB.”

3 Use the Signal From Workspace block to import the speech signal from
the MATLAB workspace into your Simulink model. Open the Signal

6-3



6 Frequency Domain Signals

From Workspace dialog box by double-clicking the block. Set the block
parameters as follows:

• Signal = mtlb

• Sample time = 1/8000

• Samples per frame = 80

• Form output after final data value by = Setting to zero

Once you are done setting these parameters, the Signal From Workspace
dialog box should look similar to the figure below.

Signal Processing Blockset is capable of frame-based processing. In other
words, Signal Processing Blockset blocks can process multiple samples of
data at one time. This improves the computational speed of your model.
In this case, by setting the Samples per frame parameter to 80, you are
telling the Signal From Workspace block to output a frame that contains 80
signal samples at each simulation time step. Note that the sample period of
the input signal is 1/8000 seconds. Also, after the block outputs the final
signal value, all other outputs are zero.

6-4



Power Spectrum Estimates

4 Use the Buffer block to buffer the input signal into frames that contain 128
samples. Open the Buffer dialog box by double-clicking the block. Set the
block parameters as follows:

• Output buffer size (per channel) = 128

• Buffer overlap = 48

• Initial conditions = 0

Once you are done setting these parameters, the Buffer dialog box should
look similar to the figure below.

Based on these parameters, the first output frame contains 48 initial
condition values followed by the first 80 samples from the first input frame.
The second output frame contains the last 48 values from the previous
frame followed by the second 80 samples from the second input frame,
and so on. You are buffering your input signal into an output signal with
128 samples per frame to minimize the estimation noise added to your
signal. Also, because 128 is a power of 2, this operation optimizes the FFT
performed by the Periodogram block.

6-5



6 Frequency Domain Signals

5 Use the Periodogram block to compute a nonparametric estimate of the
power spectrum of the speech signal. Open the Periodogram dialog box by
double-clicking the block. Set the block parameters as follows:

• Window type = Hamming

• Window sampling = Periodic

• Select the Inherit FFT length from input dimensions check box.

• Number of spectral averages = 2

Once you are done setting these parameters, the Periodogram dialog box
should look similar to the figure below.

Based on these parameters, the block applies a Hamming window
periodically to the input speech signal and averages two spectra at one
time. The length of the FFT is assumed to be 128, which is the number of
samples per frame being output from the Buffer block.

6-6



Power Spectrum Estimates

6 Use the Vector Scope block to view the power spectrum of the speech signal.
Open the Vector Scope dialog box by double-clicking the block. Set the
block parameters as follows:

• Input domain = Frequency

• Click the Axis Properties tab.

• Clear the Inherit sample time from input check box.

• Sample time of original time series = 1/8000

• Y-axis title = Magnitude-squared, dB

Once you are done setting these parameters, the Axis Properties pane
of the Vector Scope dialog box should look similar to the figure below. As
you can see by the Amplitude scaling parameter, the decibel amplitude is
plotted in a vector scope window.

6-7



6 Frequency Domain Signals

Because you are buffering the input with a nonzero overlap, you have
altered the sample time of the signal. As a result, you need to specify the
sample time of the original time series. Otherwise, the overlapping buffer
samples lead the block to believe that the sample time is shorter than it
actually is.

After you have set the block parameter values, you can calculate and view the
power spectrum of the speech signal.

Viewing the Power Spectrum Estimates
In the previous topics, you created a power spectrum model and set its
parameters. In this topic, you simulate the model and view the power
spectrum of your speech signal:

1 If the model you created in “Setting the Model Parameters” on page 6-3 is
not open on your desktop, you can open an equivalent model by typing

doc_gstut10

at the MATLAB command prompt.

2 Set the configuration parameters. Open the Configuration Parameters
dialog box by selecting Configuration Parameters from the Simulation
menu. Select Solver from the menu on the left side of the dialog box, and
set the parameters as follows:

• Stop time = 0.5

• Type = Fixed-step

• Solver = discrete (no continuous states)

6-8



Power Spectrum Estimates

3 Apply these parameters and close the Configuration Parameters dialog
box by clicking OK. These parameters are saved only when you save your
model.

4 If you have not already done so, load the speech signal into the MATLAB
workspace by typing load mtlb.

5 Run the model to open the Vector Scope window. The data is not
immediately visible at the end of the simulation. To autoscale the y-axis to
fit the data, in the Vector Scope window, right-click and choose Autoscale.
The following figure shows the data displayed in the Vector Scope window.

6-9



6 Frequency Domain Signals

During the simulation, the Vector Scope window displays a series of frames
output from the Periodogram block. Each of these frames corresponds to
a window of the original speech signal. The data in each frame represents
the power spectrum, or contribution of every frequency to the power of the
original speech signal, for a given window.

In the next section, “Spectrograms” on page 6-11, you use these power
spectrums to create a spectrogram of the speech signal.

6-10



Spectrograms

Spectrograms

In this section...

“Modifying the Block Diagram” on page 6-11

“Setting the Model Parameters” on page 6-13

“Viewing the Spectrogram of the Speech Signal” on page 6-17

Modifying the Block Diagram
Spectrograms are color-based visualizations of the evolution of the
power spectrum of a speech signal as this signal is swept through time.
Spectrograms use the periodogram power spectrum estimation method and
are widely used by speech and audio engineers. You can use them to develop a
visual understanding of the frequency content of your speech signal while a
particular sound is being vocalized.

In the previous section, you built a model capable of calculating the power
spectrum of a speech signal that represents a woman saying “MATLAB.” In
this topic, you modify this model to view the spectrogram of your signal:

1 If the model you created in “Viewing the Power Spectrum Estimates” on
page 6-8 is not open on your desktop, you can open an equivalent model
by typing

doc_gstut11

at the MATLAB command prompt.

6-11



6 Frequency Domain Signals

2 Add the following blocks to your model. Subsequent topics describe how
to use these blocks.

Block Library

Selector Simulink / Signal Routing

dB Conversion Math Functions / Math Operations

Buffer Signal Management / Buffers

Transpose Math Functions / Matrices and Linear
Algebra / Matrix Operations

Matrix Viewer Signal Processing Sinks

3 Connect the blocks as shown in the figure below. These blocks extract the
positive frequencies of each power spectrum and concatenate them into a
matrix that represents the spectrogram of the speech signal.

6-12



Spectrograms

Once you have assembled the blocks needed to view the spectrogram of your
speech signal, you can set the block parameters.

Setting the Model Parameters
In the previous topic, you assembled the blocks you need to view the
spectrogram of your speech signal. Now you must set the block parameters:

1 If the model you created in “Modifying the Block Diagram” on page 6-11 is
not open on your desktop, you can open an equivalent model by typing

doc_gstut12

at the MATLAB command prompt.

2 Use the Selector block to extract the first 64 elements, or the positive
frequencies, of each power spectrum. Open the Selector dialog box by
double-clicking the block. Set the block parameters as follows:

• Number of input dimensions = 1

• Index mode = One-based

• Index option = Index vector (dialog)

6-13



6 Frequency Domain Signals

• Index = 1:64

• Input port size = 128

At each time instance, the input to the Selector block is a vector of 128
elements. The block assigns one-based indices to these elements and
extracts the first 64. Once you are done setting these parameters, the
Selector dialog box should look similar to the figure below.

3 The dB Conversion block converts the magnitude of the input FFT signal to
decibels. Leave this block at its default parameters.

4 Use the Buffer1 block to concatenate the individual power spectrums into a
matrix. Open the Buffer1 dialog box by double-clicking the block. Set the
block parameters as follows:

• Output buffer size (per channel) = 48

• Buffer overlap = 46

• Initial conditions = -70

6-14



Spectrograms

Once you are done setting these parameters, the Buffer1 dialog box should
look similar to the figure below.

Based on these parameters, the Buffer1 block buffers the 64-by-1
frame-based input signal 48 times in order to create a 64-by-48 frame-based
signal. In other words, it collects the power spectrums calculated at each
time and concatenates them into a matrix. The block then outputs the
transpose of this matrix. To ensure that your spectrogram represents
smooth movement through time, set the value of the Buffer overlap
parameter slightly less than the value of the Output buffer size (per
channel) parameter. The Initial conditions parameter represents the
initial values in the buffer; -70 represents silence.

5 The Transpose block transposes the input signal back to its original
orientation. Leave this block at its default parameters.

6 The Matrix Viewer enables you to view the spectrogram of the speech
signal. Open the Matrix Viewer dialog box by double-clicking the block.
Set the block parameters as follows:

• Click the Image Properties tab.

• Colormap matrix = jet(256)

6-15



6 Frequency Domain Signals

• Minimum input value = -70

• Maximum input value = 15

• Select the Display colorbar check box.

Once you are done setting these parameters, the Image Properties pane
should look similar to the figure below.

• Click the Axis Properties tab.

• Axis origin = Lower left corner

• X-axis title = Time Index

• Y-axis title = Frequency Index

• Colorbar title = dB Magnitude

In this case, you are assuming that the power spectrum values do not
exceed 15 dB. Once you are done setting these parameters, the Axis
Properties pane should look similar to the figure below.

6-16



Spectrograms

After you have set the parameter values, you can calculate and view the
spectrogram of the speech signal.

Viewing the Spectrogram of the Speech Signal
In the topic “Viewing the Power Spectrum Estimates” on page 6-8, you used a
Vector Scope block to display the power spectrum of your speech signal. In this
topic, you view the spectrogram of your speech signal using a Matrix Viewer
block. The speech signal represents a woman’s voice saying “MATLAB”:

1 If the model you created in “Setting the Model Parameters” on page 6-13 is
not open on your desktop, you can open an equivalent model by typing

doc_gstut13

at the MATLAB command prompt.

6-17



6 Frequency Domain Signals

2 Run the model. During the simulation, the Vector Scope window displays a
sequence of power spectrums, one for each window of the original speech
signal. The power spectrum is the contribution of every frequency to the
power of the speech signal.

6-18



Spectrograms

The Matrix Viewer window, shown below, displays the spectrogram of
the speech signal. This spectrogram is calculated using the Periodogram
power spectrum estimation method. Note the harmonics that are visible
in the signal when the vowels are spoken. Most of the signal’s energy is
concentrated in these harmonics; therefore, two distinct peaks are visible
in the spectrogram.

6-19



6 Frequency Domain Signals

In this example, you viewed the spectrogram of your speech signal using a
Matrix Viewer block. You can find additional Signal Processing Blockset
examples in the Help browser. To access these examples, click the Contents
tab, double-click Signal Processing Blockset, and then click Examples. A
list of the examples in the Signal Processing Blockset documentation appears
in the right pane of the Help browser.

For information about Signal Processing Blockset demos, see “Product Demos”
on page 1-5. For additional information about Signal Processing Blockset
functionality, see the Signal Processing Blockset User’s Guide.

6-20



Index

IndexA
adaptive filtering 2-18
adaptive filters

adding to model 4-13
blocks 2-18
designing 4-9
viewing coefficients 4-17

algebra
linear 2-19

algorithms
solver 5-5

B
background

user’s expected 1-11
blocks

accessing directly 2-5
accessing with Simulink Library browser 2-5
links into models 5-11
Waterfall Scope 2-2

build directory
setting up 5-4

C
C code

generating 5-10
optimization 5-3

code
generating 5-4

code generation 5-4
HTML report 5-11
links to model blocks 5-11
minimizing size of 2-24
optimization 5-3
options 5-9
overview 5-2
setting parameters 5-5
support for 2-18

targets 5-6
understanding 5-2
viewing code 5-11
with Real-Time Workshop 5-2

coefficients
of adaptive filter 4-17

Comparison of Spectral Analysis Techniques
demo 2-19

configuration parameters
setting 5-5

Configuration Parameters dialog box 5-5
creation of

adaptive filters 4-9
digital filters 4-2
spectrograms 6-11

D
data type

support 2-20
demos

Comparison of Spectral Analysis
Techniques 2-19

Help browser 1-5
LMS Adaptive Equalization 2-18
MATLAB Central 1-8
Sample Rate Conversion 2-17
Statistical Functions 2-19
Web 1-8

design of
adaptive filters 4-9
digital filters 4-2

digital filters
adding to model 4-6
designing 4-2

displaying
coefficients of adaptive filter 4-17
documentation 1-10
generated code 5-11
power spectrum of speech signal 6-8

Index-1



Index

spectrograms 6-17
documentation

installing 1-3
on system 1-10
on Web 1-10
PDF 1-11
printing 1-11
viewing 1-10

dspstartup M-file
editing 2-23

E
environment (system)

setting up 1-3
estimation

parametric 2-19
power spectrum

example 6-2

F
features

Signal Processing Blockset 2-16
Filter Design and Analysis Tool (FDATool) 4-2
filters

adding to model 4-6
lowpass 4-2

fixed-point support 2-17
fixed-step solvers

setting 2-24
frame-based

operations 2-16
signals 2-12

function reuse 5-3
functionality of Signal Processing Blockset 2-2
functions, utility

startup 2-23

G
generated code

size of 2-24

H
HTML reports 5-11

links to model blocks 5-11

I
installation

documentation 1-3
Signal Processing Blockset 1-3

L
libraries

Signal Processing Blockset 2-5
linear algebra 2-19
links to model blocks 5-11
LMS Adaptive Equalization demo 2-18
loop-rolling 2-24
lowpass filters 4-2

M
M-files

startup 2-23
MATLAB Central

signal processing demos 1-8
matrices

frame-based 2-12
support for 2-20

memory
conserving 2-23

modeling system behavior 2-2
models

creating 3-2
modifying 3-11
running 3-8

Index-2



Index

multirate
filtering 2-18
processing 2-17

N
noise

adding to signal 3-11

O
operations

frame-based 2-16
statistical 2-19

optimization
code generation 5-3

options
code generation 5-9

organization of chapters 1-11
Out block

suppressing output 2-23

P
parameter reuse 5-3
parameters

changing during simulation 2-14
code generation 5-5
configuration 5-5
estimating 2-19
model 3-6
Solver 2-24
Stop Time 2-24
tuning 2-14

parametric estimation 2-19
performance

dspstartup M-file 2-23
power spectrum

estimation 6-2
of speech signal 6-2
viewing 6-8

printing documentation 1-11
processing

multirate 2-17

Q
quantization 2-18

R
Real-Time Workshop

and loop-rolling 2-24
build directory 5-4
code generation 5-2
generating code 5-4

reuse of
functions 5-3
parameters 5-3

S
Sample Rate Conversion demo 2-17
selection of

target configurations 5-6
setting

code generation parameters 5-5
configuration parameters 5-5
model parameters 3-6

setting up
build directory 5-4
system 1-3

signal concepts 2-10
signal processing model

building 3-2
signals

definition 2-10
simulation

of system behavior 2-2
simulations

accelerating 2-23
size of generated code 2-24

Index-3



Index

stopping 2-24
Simulink Library Browser 2-5
solver algorithms

selecting 5-5
Solver parameter 2-24
spectrogram

creating 6-11
of speech signal 6-11
viewing 6-17

speed
improving 2-23

startup M-file 2-23
Statistical Functions demo 2-19
statistical operations 2-19
Stop Time parameter 2-24
stopping a simulation 2-24
suppressing

tout vector 2-23
system

setup 1-3
system behavior

modeling 2-2

T
target configurations

selecting 5-6
targets

code generation 5-6
time-step vector

saving to workspace 2-23
tout vector

suppressing 2-23
tunable parameters 2-14

definition 2-14

V
variable-step solver

setting 2-24
viewing

coefficients of adaptive filter 4-17
documentation 1-10
generated code 5-11
power spectrum of speech signal 6-8
spectrogram of speech signal 6-17

W
Waterfall Scope block 2-2
Web

demos 1-8
documentation 1-10

workspace
suppressing output to 2-23

Y
yout

suppressing 2-23

Index-4


	toc
	Introduction
	What Is Signal Processing Blockset?
	System Setup
	Installation
	Installing Signal Processing Blockset
	Installing Online Documentation

	Required Products
	MATLAB
	Simulink
	Signal Processing Toolbox

	Related Products

	Product Demos
	Demos in the Help Browser
	Demos on the Web
	Demos on MATLAB Central

	Working with the Documentation
	Viewing the Documentation
	Documentation in the Help Browser
	Documentation on the Web

	Printing the Documentation
	Using This Guide
	Expected Background
	What Chapters Should I Read?



	Signal Processing Blockset Overview
	Sample Model and Block Libraries
	Modeling System Behavior
	Signal Processing Blockset Blocks
	Accessing Blocks Directly
	Accessing Blocks with the Library Browser


	Key Blockset Concepts
	Signals
	Sample Time
	State
	Sample-Based Signals
	Frame-Based Signals
	Tunable Parameters
	How to Tune Parameters
	Tunable Parameters During Simulation


	Features of Signal Processing Blockset
	Frame-Based Operations
	Multirate Processing
	Fixed-Point Support
	Real-Time Code Generation
	Adaptive and Multirate Filtering
	Quantization
	Statistical Operations
	Linear Algebra
	Parametric Estimation
	Matrix Support
	Data Type Support

	Configuring Simulink for Signal Processing Models
	Using dspstartup.m
	Settings in dspstartup.m


	Signal Processing Models
	Creating a Block Diagram
	Setting the Model Parameters
	Running the Model
	Modifying Your Model

	Filters
	Digital Filters
	Designing a Digital Filter
	Adding a Digital Filter to Your Model

	Adaptive Filters
	Designing an Adaptive Filter
	Adding the Adaptive Filter to Your Model
	Viewing the Coefficients of Your Adaptive Filter


	Code Generation
	Understanding Code Generation
	Code Generation with Real-Time Workshop
	Windows Dynamic Library Dependencies

	Highly Optimized Generated C Code

	Generating Code
	Setting Up the Build Directory
	Setting Configuration Parameters
	Selecting a Solver Algorithm
	Selecting a Target Configuration
	Controlling Other Code Generation Options

	Generating Code
	Viewing the Generated Code


	Frequency Domain Signals
	Power Spectrum Estimates
	Creating the Block Diagram
	Setting the Model Parameters
	Viewing the Power Spectrum Estimates

	Spectrograms
	Modifying the Block Diagram
	Setting the Model Parameters
	Viewing the Spectrogram of the Speech Signal


	Index

	tables
	Supported Data Types


